Search results for "Air filter"
showing 10 items of 12 documents
Removal of acetone from air emissions by biotrickling filters: providing solutions from laboratory to full-scale
2018
A full-scale biotrickling filter (BTF) treating acetone air emissions of wood-coating activities showed difficulties to achieve outlet concentrations lower than 125 mg C m-3, especially for high inlet concentrations and oscillating emissions. To solve this problem, a laboratory investigation on acetone removal was carried out simulating typical industrial conditions: discontinuous and variable inlet concentrations and intermittent spraying. The results were evaluated in terms of removal efficiency and outlet gas emission pattern. Industrial emissions and operational protocols were simulated: inlet load up to 70 g C m-3 h-1 during 2 cycles of 4 h per day and intermittent trickling of 15 min …
Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam
2016
The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g m(-3) hour(-1) and at an empty bed residence time (EBRT) of 12.5s. Under an IL of ∼130 g m(-3) hour(-1), BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106±7 and 68±8 g m(-3) hour(-1), respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation inte…
Is Active Moss Biomonitoring Comparable to Air Filter Standard Sampling?
2022
Recently, significant attention has been paid to air quality awareness and its impact on human health, especially in urban agglomerations. Many types of dust samplers for air quality monitoring are used by governmental environmental monitoring agencies. However, these techniques are associated with high costs; as a consequence, biological methods such as active moss biomonitoring are being developed. The main disadvantages of such techniques are the lack of standardization of the preparation procedures and the lack of reliable comparisons of results with data from instrumental analyses. Our study aimed to compare the results obtained from active biomonitoring with the use of three moss spec…
Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.
2015
The removal of styrene was studied using 2 biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and 1 biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for biofilters and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m-3 h-1 and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm-3, removal efficiencies between 70 and 95% were obtained in the 3 bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m-3 h-1 were obtained…
Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19
2021
The SARS-CoV-2 virus is causing devastating morbidity and mortality worldwide. Nanomedicine approaches have a high potential to enhance conventional diagnostics, drugs and vaccines. In fact, lipid nanoparticle/mRNA vaccines are already widely used to protect from COVID-19. In this review, we present an overview of the taxonomy, structure, variants of concern, epidemiology, pathophysiology and detection methods of SARS-CoV-2. The efforts of repurposing, tailoring, and adapting pre-existing medications to battle COVID-19 and the state of vaccine developments are presented. Next, we discuss the broad concepts and limitations of how nanomedicine could address the COVID-19 threat. Nanomaterials …
Risk factors for breakthrough invasive fungal infection during secondary prophylaxis.
2008
BACKGROUND: Intensive chemotherapy with severe neutropenia is associated with invasive fungal infections (IFIs) leading to high mortality rates. During leukaemia induction chemotherapy, IFI often prohibited further curative treatment, thus predisposing for leukaemia relapse. Continuing myelosuppressive chemotherapy after diagnosis of IFI has become feasible with the now expanding arsenal of safe and effective antifungals. Secondary prophylaxis of IFI is widely administered, but reliable data on outcome and risk factors for recurrent IFI during subsequent chemotherapy are not available. This study determines risk factors for recurrent IFI in leukaemia patients. METHODS: From 25 European canc…
A low-level spectrometer with a planar low-energy HPGe: shielding arrangement tests and system performance for 210Pb determination in air filter samp…
2001
A system for low-energy photon spectrometry using a planar germanium detector with appropriate specifications is presented. A spectrometric background investigation has been carried out with various detector shielding arrangements. The characteristics of the system for measurements of 210Pb in air-particulate matter on filters have been determined.
Quantitative DNA Analyses for Airborne Birch Pollen
2015
Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus poll…
The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol
2021
The use of biological indicators of environmental quality is an alternative method of monitoring ecosystem pollution. Various groups of contaminants, including organic ones, can be measured in environmental samples. Polycyclic aromatic hydrocarbons (PAHs) have not yet been determined by the moss bag technique. This technique uses several moss species simultaneously in urban areas to select the best biomonitoring of these compounds, which are dangerous to humans and the environment. In this research, a gas chromatography coupled with mass spectrometry was used for the determination of selected PAHs in three species of mosses: Pleurozium schreberi, Sphagnum fallax and Dicranum polysetum (acti…
Resonance ionization mass spectroscopy for trace determination of plutonium in environmental samples
1997
Resonance ionization mass spectroscopy (RIMS) is a sensitive and isotope selective method and well suited for trace analysis of plutonium in the environment. After the chemical isolation of plutonium from soil, air filters or urine, e.g., it is electrolytically deposited as hydroxide on a tantalum backing and covered with a thin titanium layer. By heating such a sandwich filament in the RIMS-apparatus under vacuum an atomic beam of plutonium is produced. The atoms are ionized by a three-step resonant excitation using pulsed dye lasers, and the ions are mass-selectively detected with a time-of-flight (TOF) spectrometer and a multi channel plate detector. RIMS yields a low detection limit of …